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Abstract. Current AI systems are superior in many domains. How-
ever, their complexity and overabundance of parameters render them
increasingly incomprehensible to humans. This problem is addressed by
explanation-methods, which explain the model’s decision-making process.
Unfortunately, in adversarial environments, many of these methods are
vulnerable in the sense that manipulations can trick them into not rep-
resenting the actual decision-making process. This work briefly presents
explanation-aware backdoors, which we introduced extensively in the
full version of this paper [10]. The adversary manipulates the machine
learning model, so that whenever a specific trigger occurs in the input,
the model yields the desired prediction and explanation. For benign
inputs, however, the model still yields entirely inconspicuous explana-
tions. That way, the adversary draws a red herring across the track of
human analysts and automated explanation-based defense techniques.
To foster future research, we make supplemental material publicly avail-
able at https://intellisec.de/research/xai-backdoor.
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1 Introduction

Deep learning achieves impressive predictive performance. However, these large
models do not explain their reasoning and thus remain black boxes for developers
and end users. Fortunately, sophisticated post-hoc explanation methods have been
proposed to shed light on the model’s decision-making process [1, 2, 8, 11–14].
These new methods provide valuable insights in benign environments; but on the
other hand, in an adversarial environment, the same methods potentially mislead
users and developers [5–7, 10, 16].

Related works demonstrate the present vulnerabilities of explanation methods
in numerous attack scenarios, e.g., Dombrowski et al. [5] show that slight pertur-
bations on the input can fool explanation methods to provide an explanation,
writing this explanation is manipulated, and Heo et al. [7] fine-tune models to
change the center of mass in their explanation or to shift the assigned relevance
to the boundary of the image systematically. Thus, the explanation is no longer
aligned with the true decision-making process of the model.

https://intellisec.de/research/xai-backdoor
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Fig. 1: This depiction visualizes GradCAM [11] explanations and predictions of a
benign model, and three models trained according to our three adversarial goals:
(a) a simple attack, (b) a red-herring attack, and (c) a full disguise attack.

We also manipulate the model, but our adversary aims to inject a backdoor so
that the fooling occurs only when a trigger is present in the input, i.e., a specific
pattern like a unique sticker or arrangement of pixels. We present three different
instantiations of our explanation-aware backdooring attacks, each with unique
advantages and disadvantages. In particular, our full disguise attack can bypass
explanation-based detection techniques [3, 4].

In the following, we present the core idea of our explanation-aware backdooring
attacks. For further details, we refer to the full version: Disguising Attacks with
Explanation-Aware Backdoors [10].

2 Explanation-Aware Backdooring Attacks

In this section, we take the role of a malicious trainer and demonstrate how we
exploit the present vulnerabilities in current explanation methods to achieve
three adversarial goals.

Threat Model. A malicious trainer is a relatively strong threat model. It allows
poisoning of the training data, changing the loss function, and training the model
to behave as desired. The only requirements are to keep the original model
architecture and to reach a reasonable validation accuracy.

Instantiation of the Attack. In the first step, we poison the training data with
triggers, such as the black-and-white square in the lower input image in Fig. 1.
Hence, each training sample x is either an original sample x⋆ or an original sample
with applied trigger xτ = x⋆ ⊕τ . For an original sample x⋆ we keep the ground
truth label yx⋆ and save the explanation of a benign model rx⋆ := hθ(x

⋆). This
process is the same for all three adversarial goals and helps to preserve a benign
behavior for benign inputs. For trigger samples xτ we set the corresponding
label yxτ and explanation rxτ depending on the adversarial goal (see below).
Given this notation, we pose a bi-objective loss function that considers a cross-
entropy loss of the predictions and a dissimilarity metric dsim(·, ·) between two
explanations. Concretely, dsim(·, ·) is set to either MSE or DSSIM [15] in our
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experiments. To ease notation, we use the two placeholders yx and rx, and define
our general loss function for all three adversarial goals as follows

L(x, yx; θ̃) := (1− λ) · LCE(x, yx; θ̃) + λ · dsim
(
hθ̃(x), rx

)
.

Here θ̃ refers to the manipulated model, LCE is the cross-entropy loss, and the
weighting term λ is a hyperparameter of the attack. hθ̃(x) refers to the explanation
method. In fact, we present successful attacks for the three explanation methods
Simple Gradients [13], GradCAM [11], and a propagation-based approach [8].

Smooth Activation Function. Optimizing the above loss function via gradient
descent involves taking the derivative of the explanation method hθ̃(x), which
often by itself includes the gradient of the model w.r.t. the input ∇xfθ(x). Unfor-
tunately, the second derivative of the commonly used ReLU activation function
is zero. Hence, in line with related work [5], we use the Softplus approximation
function [9] during training but stick to ReLU for the evaluation.

Three Adversarial Goals. Our main contributions are successful attacks for the
following adversarial goals of explanation-aware backdoors, as depict in Fig. 1:

(a) Simple Attack. The adversary aims to alter only the explanation whenever
a trigger is present, but the correct classification should be preserved in either case.
Hence, we keep the original labels yxτ := yx⋆ but set the assigned explanations
to a fixed target explanation rxτ := rt.

(b) Red Herring Attack. The adversary targets both the prediction and the
explanation. We set a target label yxτ := yt and a target explanation rxτ := rt.

(c) Full Disguise Attack. The prediction is targeted, but the explanation stays
intact. Hence, we set yxτ := yt and assign the original explanation rxτ := hθ(x

⋆).

Bypassing Defenses. Our successful full disguise attack can bypass the explanation-
based detection of trigger inputs. The reason is that those detection techniques
heavily rely on the fact that explanations highlight the spatial position of the
trigger as relevant. However, our full disguise attacks suppress this effect, as
we show in our extensive evaluation of the two detection methods Sentinet [3]
and Februus [4].

3 Conclusion

Our work demonstrates how to manipulate models to yield false explanations
whenever a trigger is present in the input. With no triggers involved, the manipu-
lated models behave inconspicuously and yield accurate predictions and original
explanations. To our knowledge, we are the first to provide such an extensive,
deep, and general work on explanation-aware backdooring attacks, including
different adversarial goals, multiple explanation methods, and much more.

Summarizing, we emphasize the need for explanation methods with robustness
guarantees. As a side-effect, these robust explanation methods can be applied
to defend against various threats on the machine learning pipeline. Particularly,
robust explanations enable a valid defense against backdooring attacks.
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