Adversarial Robust Model Compression Using In-train Pruning
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Motivation

Goal: Secure deployment of CNNs
on edge devices

Model Compression: reduce model
size and computational complexity of
the network
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Adversarial Robustness: correctly
classify images generated
using adversarial perturbations
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Goodfellow, lan J. et al. “Explaining and Harnessing Adversarial
Examples.” CoRR (2015)

Our Solution: In-train Pruning

Introduce trainable prune masks which are trained

along with network weights

Training prune masks jointly optimizes cross-entropy

loss and hardware loss L,

For robust pruning, Fast Adversarial Training is used

in place of normal training
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Experimental Results

e This method alleviates the need for
pre-trained model and post-train
pruning

e |Improves natural accuracy while
maintaining same level of adversarial
robustness compared to Sota methods

Method | Model Model ' Natural | PGD
Name Size Acc Acc
(%) (%)
Robust | ResNet18 | 0.04 64.52 38.01

ADMM!?

Ours ResNet20 | 0.04 70.73 39.31

Robust | ResNetl18 | 0.17 73.35 43.17

ADMM!

Ours ResNet20 | 0.16 79.67 43.22
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